
From ISO/IEC 9899:1999 to 9899:201x

C is quirky, flawed, and an enormous success. – Dennis M. Ritchie

Florian Westphal Hagen Paul Pfeifer

fw@strlen.de hagen.pfeifer@protocollabs.de

February, 2011

mailto:

Introduction

- WG14 Charter Principles (none are absolute):

- Existing code is important, existing implementations are not

- C code can be portable – C code can be non-portable

- Avoid “quiet changes”

- Keep the spirit of C

- Trust the programmer

- Don’t prevent the programmer from doing what needs to be done

- Keep the language small and simple.

- Provide only one way to do an operation

- Make it fast, even if it is not guaranteed to be portable

- Make support for safety and security demonstrable

- Support international programming (additional principle for C9X)

From ISO/IEC 9899:1999 to 9899:201x 2 | 30

- Minimize incompatibilities with C++ (additional principle for C9X)

- Trust the programmer is outdated (additional principle for C1X, programmers need

the ability to check their work)

From ISO/IEC 9899:1999 to 9899:201x 3 | 30

Introduction

- JTC1/SC22 is the international standardization subcommittee for programming

languages

- WG14 – C

- WG9 – Ada

- WG21 – C++

- WG23 – Programming Language Vulnerabilities

- . . .

From ISO/IEC 9899:1999 to 9899:201x 4 | 30

Introduction C99 - Determining the Type of a
Literal Constant

- C99

- Decimal constant (no suffix): int, long int, long long int

- Decimal constant (l or L suffix): long int, long long int

- But: to be upward compatible with C89 and C++ the list should be:

- int, long int, unsigned long int, long long int

- long int, unsigned long int, long long int

- . . . but it isn’t!

- Consequence (arch: i386-pc-linux-gnu (32 bit)):

- In C99 4000000000 fits into long long

- In C89 4000000000 fits into unsigned long

- Result: C99 and C89 are not compatible

- (4000000000 > -1) ? "> - C99" : "< - C89"
From ISO/IEC 9899:1999 to 9899:201x 5 | 30

Introduction C99 - Comments in C89 / C99

- C99 added support for C++ -Style Comments (”//”)

- . . . alters program behaviour:

printf("%d\n", 1 //* */ 2

);

From ISO/IEC 9899:1999 to 9899:201x 6 | 30

Run Time Assertions

- assert(3) is run-time checked

- #include <assert.h>; void assert(scalar expression);

- Implemented as a macro:

- Statement with side-effects are triggered with NDEBUG

- Never use assert() with side-effect statements

- But: some expression can be checked at compile time - no need for run-time overhead!

- if ((sizeof(struct foo) % 23) != 0) die("foo size error");

From ISO/IEC 9899:1999 to 9899:201x 7 | 30

Compile Time Assertions

- Linux Kernel:

- BUILD_BUG_ON(sizeof(struct foo) % 23));

- #define BUILD_BUG_ON(condition) ((void)sizeof(char[1 -

2*!!(condition)]))

- char[1] or char[-1]

- sizeof() is there to actually declare no array

- The cast prevents the compiler from generating an warning message

- Another idea (Miguel Sofer):

- #define ct_assert(e) {enum { ct_assert_value = 1/(!!(e)) };}

- C++:

- static_assert(constant-expression, "error message");

- _Static_assert (constant-expression , string-literal) ;

From ISO/IEC 9899:1999 to 9899:201x 8 | 30

Path of no Return

- Especially for libraries: longjump, raise, abort, fatal(), die(), abort(), . . .

- makes faster code, because the compiler can optimize more aggrisavly and produce less

machine code

- static analysis tool can provide more usefull feedback (if code path after a _Noreturn
is there, a _Noreturn declared function returns a value)

void f (void) {

FILE *f;

f = fopen(file, ...);

if (f == NULL) {

handle_error(...);

}

/* work with f */

}

_Noreturn void f () {

abort(); /* ok */

}

- handle error() - a analysis tool cannot make sure if handle error return or not. If

declared as _Noreturn then it is a lot simpler. And not: handle error may be linked

From ISO/IEC 9899:1999 to 9899:201x 9 | 30

in, there is probably no source code available for the analysis tool.

- If a function is called where the function was previously declared with the noreturn

attribute and the function returns anyway the behavior is undefined

- http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1453.htm

From ISO/IEC 9899:1999 to 9899:201x 10 | 30

Exclusive Access

- Till C99 no exclusive access fopen()
- Open must fail if a file already exist

FILE *fp = fopen("foo.txt","r");

if(!fp) {

/* file does not exist */

fp = fopen("foo.txt","w");

...

fclose(fp);

} else {

/* file exists */

fclose(fp);

}

- Race Condition between both fopen calls!

- Open Group Base Specification: O_CREAT and O_EXCL

- open("foo.txt", O_CREAT | O_EXCL) fails if file already exists

- C1X: add X flag: wx (create text file for writing with exclusive access)

From ISO/IEC 9899:1999 to 9899:201x 11 | 30

Transparent Struct and Union
- struct packet {

struct {

int proto; /* AF_INET or AF_INET6 */

union {

unsigned int addr_v4;

unsigned char addr_v6[16];

};

} header;

char *data;

size_t data_len;

}

struct packet pkt = { .header { .proto = AF_INET, .addr_v4 = INADDR_ANY },

.data = NULL, data_len = 0 };

From ISO/IEC 9899:1999 to 9899:201x 12 | 30

C1x specifcation outline

- some of the new functionality is optional → ”conditional feature macros”, e.g.:

__STDC_ANALYZABLE__: annex L conformance

__STDC_IEC_559__: Floating point arithmetic handling in annex F

- Thread support is also optional (__STDC_NO_THREADS__)

From ISO/IEC 9899:1999 to 9899:201x 13 | 30

Generic Selection

- New keyword: _Generic

- Selects assignment expressions based on type names

#define cbrt(X) _Generic((X)), long: cbrtl, default cbrt) (X)

expands to cbrtl(X) if X is of type long and cbrt(X) otherwise.

From ISO/IEC 9899:1999 to 9899:201x 14 | 30

Thread support

- #include <threads.h>

- Nobody would use C’s threads if they were wildly different to POSIX threads, which

are already widely used, documented and understood

- Similar to pthreads: mutexes, condition variables, . . .

- phtread_mutex_init → mtx_init, . . .

- Several pthread features unsupported, e.g. pthread_setschedprio

- Unlike pthreads, c1x contains functions for atomic operations and memory ordering

- _Thread_local storage-class specifier: _Thread_local int myvar;

From ISO/IEC 9899:1999 to 9899:201x 15 | 30

Atomic Ops

- #include <stdatomic.h>

- New type qualifier: _Atomic: _Atomic int foo; stdatomic.h

- Defines Types, Macros and Functions:

- Atomic Types: atomic_char, atomic_short, atomic_int, ...

- Operations on atomic types (init, compare, add, sub, . . .)

- enum memory_order: synchronize memory accesses

-
”
Fences” to order loads/stores

From ISO/IEC 9899:1999 to 9899:201x 16 | 30

Atomicity

- i++ is not an atomic operation

- Value has to be fetched, modified, and written back to memory

- For single-threaded applications this is not relevant (exception: signal handler)

- . . . but when concurrent access to i is possible, this is no longer true

- c1x makes it possible to perform such modifications in a single operation

From ISO/IEC 9899:1999 to 9899:201x 17 | 30

Atomic Functions

- atomic_{load,store,exchange}: assignments, swap values, . . .

- atomic_fetch_{add,sub,or,xor,and}: modify atomic type, returns new value

- atomic_compare_exchange_: atomic conditional swap, i.e. if (a == b) a = c;

The result of the comparison is returned.

- fences: synchronization operation without a memory location

From ISO/IEC 9899:1999 to 9899:201x 18 | 30

Ordering

void foo(void) {

int a, b;

[..]

a = 42;

b = 23;

[..]

The compiler or the CPU is free to re-order the assignments; there are no side-effects.

From ISO/IEC 9899:1999 to 9899:201x 19 | 30

Ordering

- 2nd example. Lets consider adding an element to a linked list.

1. The element is initialized (setting ->next to NULL, etc)

2. The element is assigned: tail->next = elem

- Q: Could the compiler re-order this?

- Q: Could the CPU re-order this?

From ISO/IEC 9899:1999 to 9899:201x 20 | 30

Memory Ordering

- Several of the atomic functions are so-call ”synchronization operations”.

- Necessary to make changes to memory locations in one thread visible to others in a

reliable fashion.

- Several stdatomic.h functions also have a corresponding _explicit version, e.g.

atomic_load(_Atomic *a)→atomic_load_explicit(_Atomic *a, mem-

ory_order m)

- version without _explictit has memory_order_seq_cst semantics

- memory_order: enum that defines memory ordering constraints:

- memory_order_relaxed: no ordering

- memory_order_acquire,release: load/store (read/write)

- memory_order_seq_cst: ”Sequential Consistency”: single total order for all

accesses to all variables.

From ISO/IEC 9899:1999 to 9899:201x 21 | 30

Fences (barriers)

void atomic_thread_fence(memory_order m)

void atomic_signal_fence(memory_order m)

- Compiler Optimizations & load/store reordering are inhibited

- thread_fence also emits HW fence instructions, signal_fence does not

- depending on memory_order, affects loads, stores or both

From ISO/IEC 9899:1999 to 9899:201x 22 | 30

Alignment

- gcc:

- __attribute__((aligned()))

- posix_memalign()

- since glibc 2.1.91

- C1X: #include <stdalign.h>

- New keywords: _Alignas, alignof

- New macros:

- alignof: returns the alignment requirements of the operand type

- alignas: is used to force stricter alignment requirements

- New function: aligned_alloc()

From ISO/IEC 9899:1999 to 9899:201x 23 | 30

Bounds Checking Interfaces

- C1X Draft Annex K

- libc run-time constraint checks

- set_constraint_handler_s()

- abort_handler_s, ignore_handler_s

- New functions with _s suffix:

fopen_s, fprintf_s, strcpy_s, strcat_s, gets_s, ...

From ISO/IEC 9899:1999 to 9899:201x 24 | 30

Unicode Support

- In the past

- All characters were the same size

- 8 bit (7 bit)

- string.h provides utilities function (english)

- → UNICODE

- C1X adds new datatypes

- char16_t (UTF-16)

- char32_t (UTF-32)

- (C++0x compatible)

- String Literals

- u""

- U""

From ISO/IEC 9899:1999 to 9899:201x 25 | 30

Complex Numbers

- C99 – “Complex types were added to C as part of the effort to make C suitable and

attractive for general numerical programming.” (Rationale for International Standard –

Programming Languages C)

- float _Complex

- double _Complex

- long double _Complex

- Macros to create/modifiy complex numbers

- #include <complex.h>

- int i = 3.5;

- double complex c = 5 + 3 * I; (Macro I expands to _Imaginary_I or

_Complex_I)

- Conditional feature:

- __STDC_NO_COMPLEX__ implementation does not support complex types

From ISO/IEC 9899:1999 to 9899:201x 26 | 30

- Alignment requirement as an array containing exactly two elements of corresponding

real type ({float, double, long double} [2])

- Operation of double _Complex and float yield to double _Complex

- Trigonometric Functions

- double complex cacos(double complex z);

- long double complex cacosl(long double complex z);

- long double complex cpowl(long double complex x, long double com-

plex y);

- double creal(double complex z);

- Section: 7.3 Complex arithmetic

From ISO/IEC 9899:1999 to 9899:201x 27 | 30

Quick Exit

- 7.22.4.7

- Synopsis:

#include <stdlib.h>

_Noreturn void quick_exit(int status);

- causes normal program termination to occur

- functions registered by the atexit function are not called

- signal handlers registered by the signal function are not called

- longjmp() results in undefined behavior

- glibc 2.10 (2009-03-08 Ulrich Drepper):

- stdlib/quick_exit.c

- stdlib/at_quick_exit.c

From ISO/IEC 9899:1999 to 9899:201x 28 | 30

Questions?

From ISO/IEC 9899:1999 to 9899:201x 29 | 30

Overflows

- abs(x) >= 0 is not always true!

- abs(INT_MIN) = -2147483648

- If fstrict-overflow is enabled an expression like abs(x) >= 0 can be simplified to

a constant expression - be aware!

- The compiler will assume that when doing arithmetic with signed numbers overflow

will not happen

- Since GCC 4.2 this option is on by default with -O2, -O3 and -Os

- Wstrict-overflow=2 to warn about simplifications

From ISO/IEC 9899:1999 to 9899:201x 30 | 30

	Introduction
	Introduction
	Introduction C99 - Determining the Type of a Literal Constant
	Introduction C99 - Comments in C89 / C99
	Run Time Assertions
	Compile Time Assertions
	Path of no Return
	Exclusive Access
	Transparent Struct and Union
	C1x specification outline
	Generic Selection
	Thread support
	Atomic Ops
	Atomicity
	Atomic Functions
	Ordering
	Ordering
	Memory Ordering
	Fences (barriers)
	Alignment
	Bounds Checking Interfaces
	Unicode Support
	Complex Numbers
	Quick Exit
	Questions?
	Overflows

