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Introduction

- WG14 Charter Principles (none are absolute):

- Existing code is important, existing implementations are not

- C code can be portable – C code can be non-portable

- Avoid “quiet changes”

- Keep the spirit of C

- Trust the programmer

- Don’t prevent the programmer from doing what needs to be done

- Keep the language small and simple.

- Provide only one way to do an operation

- Make it fast, even if it is not guaranteed to be portable

- Make support for safety and security demonstrable

- Support international programming (additional principle for C9X)
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- Minimize incompatibilities with C++ (additional principle for C9X)

- Trust the programmer is outdated (additional principle for C1X, programmers need

the ability to check their work)
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Introduction

- JTC1/SC22 is the international standardization subcommittee for programming

languages

- WG14 – C

- WG9 – Ada

- WG21 – C++

- WG23 – Programming Language Vulnerabilities

- . . .
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Introduction C99 - Determining the Type of a
Literal Constant

- C99

- Decimal constant (no suffix): int, long int, long long int

- Decimal constant (l or L suffix): long int, long long int

- But: to be upward compatible with C89 and C++ the list should be:

- int, long int, unsigned long int, long long int

- long int, unsigned long int, long long int

- . . . but it isn’t!

- Consequence (arch: i386-pc-linux-gnu (32 bit)):

- In C99 4000000000 fits into long long

- In C89 4000000000 fits into unsigned long

- Result: C99 and C89 are not compatible

- (4000000000 > -1) ? "> - C99" : "< - C89"
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Introduction C99 - Comments in C89 / C99

- C99 added support for C++ -Style Comments (”//”)

- . . . alters program behaviour:

printf("%d\n", 1 //* */ 2

);
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Run Time Assertions

- assert(3) is run-time checked

- #include <assert.h>; void assert(scalar expression);

- Implemented as a macro:

- Statement with side-effects are triggered with NDEBUG

- Never use assert() with side-effect statements

- But: some expression can be checked at compile time - no need for run-time overhead!

- if ((sizeof(struct foo) % 23) != 0) die("foo size error");
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Compile Time Assertions

- Linux Kernel:

- BUILD_BUG_ON(sizeof(struct foo) % 23));

- #define BUILD_BUG_ON(condition) ((void)sizeof(char[1 -

2*!!(condition)]))

- char[1] or char[-1]

- sizeof() is there to actually declare no array

- The cast prevents the compiler from generating an warning message

- Another idea (Miguel Sofer):

- #define ct_assert(e) {enum { ct_assert_value = 1/(!!(e)) };}

- C++:

- static_assert(constant-expression, "error message");

- _Static_assert ( constant-expression , string-literal ) ;
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Path of no Return

- Especially for libraries: longjump, raise, abort, fatal(), die(), abort(), . . .

- makes faster code, because the compiler can optimize more aggrisavly and produce less

machine code

- static analysis tool can provide more usefull feedback (if code path after a _Noreturn
is there, a _Noreturn declared function returns a value)

void f (void) {

FILE *f;

f = fopen( file, ...);

if (f == NULL) {

handle_error( ... );

}

/* work with f */

}

_Noreturn void f () {

abort(); /* ok */

}

- handle error() - a analysis tool cannot make sure if handle error return or not. If

declared as _Noreturn then it is a lot simpler. And not: handle error may be linked
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in, there is probably no source code available for the analysis tool.

- If a function is called where the function was previously declared with the noreturn

attribute and the function returns anyway the behavior is undefined

- http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1453.htm

From ISO/IEC 9899:1999 to 9899:201x 10 | 30



Exclusive Access

- Till C99 no exclusive access fopen()
- Open must fail if a file already exist

FILE *fp = fopen("foo.txt","r");

if( !fp ) {

/* file does not exist */

fp = fopen("foo.txt","w");

...

fclose(fp);

} else {

/* file exists */

fclose(fp);

}

- Race Condition between both fopen calls!

- Open Group Base Specification: O_CREAT and O_EXCL

- open("foo.txt", O_CREAT | O_EXCL) fails if file already exists

- C1X: add X flag: wx (create text file for writing with exclusive access)
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Transparent Struct and Union
- struct packet {

struct {

int proto; /* AF_INET or AF_INET6 */

union {

unsigned int addr_v4;

unsigned char addr_v6[16];

};

} header;

char *data;

size_t data_len;

}

struct packet pkt = { .header { .proto = AF_INET, .addr_v4 = INADDR_ANY },

.data = NULL, data_len = 0 };
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C1x specifcation outline

- some of the new functionality is optional → ”conditional feature macros”, e.g.:

__STDC_ANALYZABLE__: annex L conformance

__STDC_IEC_559__: Floating point arithmetic handling in annex F

- Thread support is also optional (__STDC_NO_THREADS__)
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Generic Selection

- New keyword: _Generic

- Selects assignment expressions based on type names

#define cbrt(X) _Generic((X)), long: cbrtl, default cbrt ) (X)

expands to cbrtl(X) if X is of type long and cbrt(X) otherwise.
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Thread support

- #include <threads.h>

- Nobody would use C’s threads if they were wildly different to POSIX threads, which

are already widely used, documented and understood

- Similar to pthreads: mutexes, condition variables, . . .

- phtread_mutex_init → mtx_init, . . .

- Several pthread features unsupported, e.g. pthread_setschedprio

- Unlike pthreads, c1x contains functions for atomic operations and memory ordering

- _Thread_local storage-class specifier: _Thread_local int myvar;
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Atomic Ops

- #include <stdatomic.h>

- New type qualifier: _Atomic: _Atomic int foo; stdatomic.h

- Defines Types, Macros and Functions:

- Atomic Types: atomic_char, atomic_short, atomic_int, ...

- Operations on atomic types (init, compare, add, sub, . . . )

- enum memory_order: synchronize memory accesses

-
”
Fences” to order loads/stores
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Atomicity

- i++ is not an atomic operation

- Value has to be fetched, modified, and written back to memory

- For single-threaded applications this is not relevant (exception: signal handler)

- . . . but when concurrent access to i is possible, this is no longer true

- c1x makes it possible to perform such modifications in a single operation
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Atomic Functions

- atomic_{load,store,exchange}: assignments, swap values, . . .

- atomic_fetch_{add,sub,or,xor,and}: modify atomic type, returns new value

- atomic_compare_exchange_: atomic conditional swap, i.e. if (a == b) a = c;

The result of the comparison is returned.

- fences: synchronization operation without a memory location
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Ordering

void foo(void) {

int a, b;

[..]

a = 42;

b = 23;

[..]

The compiler or the CPU is free to re-order the assignments; there are no side-effects.
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Ordering

- 2nd example. Lets consider adding an element to a linked list.

1. The element is initialized (setting ->next to NULL, etc)

2. The element is assigned: tail->next = elem

- Q: Could the compiler re-order this?

- Q: Could the CPU re-order this?
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Memory Ordering

- Several of the atomic functions are so-call ”synchronization operations”.

- Necessary to make changes to memory locations in one thread visible to others in a

reliable fashion.

- Several stdatomic.h functions also have a corresponding _explicit version, e.g.

atomic_load(_Atomic *a)→atomic_load_explicit(_Atomic *a, mem-

ory_order m)

- version without _explictit has memory_order_seq_cst semantics

- memory_order: enum that defines memory ordering constraints:

- memory_order_relaxed: no ordering

- memory_order_acquire,release: load/store (read/write)

- memory_order_seq_cst: ”Sequential Consistency”: single total order for all

accesses to all variables.
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Fences (barriers)

void atomic_thread_fence(memory_order m)

void atomic_signal_fence(memory_order m)

- Compiler Optimizations & load/store reordering are inhibited

- thread_fence also emits HW fence instructions, signal_fence does not

- depending on memory_order, affects loads, stores or both
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Alignment

- gcc:

- __attribute__((aligned( )))

- posix_memalign()

- since glibc 2.1.91

- C1X: #include <stdalign.h>

- New keywords: _Alignas, alignof

- New macros:

- alignof: returns the alignment requirements of the operand type

- alignas: is used to force stricter alignment requirements

- New function: aligned_alloc()
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Bounds Checking Interfaces

- C1X Draft Annex K

- libc run-time constraint checks

- set_constraint_handler_s()

- abort_handler_s, ignore_handler_s

- New functions with _s suffix:

fopen_s, fprintf_s, strcpy_s, strcat_s, gets_s, ...
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Unicode Support

- In the past

- All characters were the same size

- 8 bit (7 bit)

- string.h provides utilities function (english)

- → UNICODE

- C1X adds new datatypes

- char16_t (UTF-16)

- char32_t (UTF-32)

- (C++0x compatible)

- String Literals

- u""

- U""
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Complex Numbers

- C99 – “Complex types were added to C as part of the effort to make C suitable and

attractive for general numerical programming.” (Rationale for International Standard –

Programming Languages C)

- float _Complex

- double _Complex

- long double _Complex

- Macros to create/modifiy complex numbers

- #include <complex.h>

- int i = 3.5;

- double complex c = 5 + 3 * I; (Macro I expands to _Imaginary_I or

_Complex_I)

- Conditional feature:

- __STDC_NO_COMPLEX__ implementation does not support complex types
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- Alignment requirement as an array containing exactly two elements of corresponding

real type ({float, double, long double} [2])

- Operation of double _Complex and float yield to double _Complex

- Trigonometric Functions

- double complex cacos(double complex z);

- long double complex cacosl(long double complex z);

- long double complex cpowl(long double complex x, long double com-

plex y);

- double creal(double complex z);

- Section: 7.3 Complex arithmetic
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Quick Exit

- 7.22.4.7

- Synopsis:

#include <stdlib.h>

_Noreturn void quick_exit(int status);

- causes normal program termination to occur

- functions registered by the atexit function are not called

- signal handlers registered by the signal function are not called

- longjmp() results in undefined behavior

- glibc 2.10 (2009-03-08 Ulrich Drepper):

- stdlib/quick_exit.c

- stdlib/at_quick_exit.c
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Questions?

From ISO/IEC 9899:1999 to 9899:201x 29 | 30



Overflows

- abs(x) >= 0 is not always true!

- abs(INT_MIN) = -2147483648

- If fstrict-overflow is enabled an expression like abs(x) >= 0 can be simplified to

a constant expression - be aware!

- The compiler will assume that when doing arithmetic with signed numbers overflow

will not happen

- Since GCC 4.2 this option is on by default with -O2, -O3 and -Os

- Wstrict-overflow=2 to warn about simplifications
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